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1 PHP2514: Applied Generalized Linear Models
1.1 Homework 2
Antonella Basso

1.1.1 Question 1:

The dataset “Optics.csv” contains information from a math education graduate student research
project. For the optics module in a high school freshman physical science class, the randomized
study compared two instruction methods (1=model building inquiry, 0=traditional scientific). The
response variable was an optics post-test score (“OptPost”). Other explanatory variables were
gender (1=female, 0=male) and the optics pre-test score (“OptPre”). The primary research ques-
tion was to test the effectiveness of the new method (model building inquiry (“MBI”)) over the
traditional one.

a) Conduct a comprehensive Exploratory Data Analysis (EDA) to inspect, understand and de-
scribe the information collected in this dataset. Use appropriate summary statistics and plots
to present your results from the EDA.

b) What do you think about the effectiveness of the two instruction methods based on the results
of the EDA?

c) Choose a model selection procedure (backward, forward, or stepwise) to find the model the
best fits your data. Check for all possible interactions terms among the covariates in the
model.

d) Based on the conclusions from the model selection procedure and your personal judgement
(e.g., adjusting for any important (according to your opinion) covariates), state the form of
the model that best describes your data. What are the assumptions of this model?

e) Assess the overall fit of the model using regression diagnostics to check model assumptions,
identify questionable observations (outliers, influential points), and/or find other problems
indicating model inadequacy.

f) Suggest a way to assess the predictive accuracy of your “best” model. Clearly describe your
approach, conduct the necessary analysis and comment on the results.

g) Interpret the regression coefficients of your “best” model.

h) Based on the analysis results what is your overall conclusion regarding the primary research
question of this study?
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[1]: #DATA WRANGLING

#installing tidyverse
install.packages("tidyverse")
library(tidyverse)

Updating HTML index of packages in '.Library'

Making 'packages.html' …
done

Warning message in system("timedatectl", intern = TRUE):
“running command 'timedatectl' had status 1”
�� Attaching packages ��������������������������������������� tidyverse
1.3.1 ��

� ggplot2 3.3.5 � purrr 0.3.4
� tibble 3.1.4 � dplyr 1.0.7
� tidyr 1.1.3 � stringr 1.4.0
� readr 1.4.0 � forcats 0.5.1

�� Conflicts ������������������������������������������
tidyverse_conflicts() ��
� dplyr::filter() masks stats::filter()
� dplyr::lag() masks stats::lag()

[2]: #importing "Optics" data
df <- read.csv("/home/jovyan/AGLM/HW2/Optics.csv")
head(df)

A data.frame: 6 × 5

ID OptPost method gender OptPre
<int> <int> <chr> <int> <int>

1 4 50 MBI 0 50
2 5 67 MBI 0 50
3 6 61 MBI 0 30
4 8 92 MBI 0 67
5 12 59 MBI 1 42
6 13 16 MBI 1 8

[3]: #removing ID column for simplicity
optics <- subset(df, select = -ID)

#renaming method values (MBI:0, traditional:1)
#this adds a column that gives a 1 if the group is traditional and 0 otherwise
#NOTE: 1*TRUE=1, 1*FALSE=0
optics$method_bin <- as.factor(1*(optics$method=='traditional'))
head(optics)
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A data.frame: 6 × 5

OptPost method gender OptPre method_bin
<int> <chr> <int> <int> <fct>

1 50 MBI 0 50 0
2 67 MBI 0 50 0
3 61 MBI 0 30 0
4 92 MBI 0 67 0
5 59 MBI 1 42 0
6 16 MBI 1 8 0

a) Exploratory Data Analysis (EDA) The variables in this dataset are as follows: - Outcome
(Y : OptPost score) - Covariate (X1: OptPre score, X2: method (0=MBI, 1=traditional), X3:
gender (0=male, 1=female))

The primary outcome of interest is a discrete random variable with ordinal scale, while the predictor
variables (covariates) are discrete with ordinal scale (X1); and categorical with nominal scale or
binary (X2 and X3).

This EDA consists of: - Descriptive Statistics - Boxplots - Histograms - Q-Q Plot - Scatter Plot

optics

Descriptive Statistics:

• Summary of OptPost (minimum value, 1st quartile, median, mean, 3rd quartile, maximum
value) for the whole data and for each method group

• Standard deviation (SD) and variance of OptPost data for each method group

[4]: #summary of total OptPost and OptPost by group (MBI and traditional)
summary(optics$OptPost)
by(optics$OptPost, optics$method, summary, na.rm=TRUE)

#SD and variance of OptPost for MBI and traditional groups
sd(optics[optics$method == "MBI",]$OptPost)
var(optics[optics$method == "MBI",]$OptPost)
sd(optics[optics$method == "traditional",]$OptPost)
var(optics[optics$method == "traditional",]$OptPost)

Min. 1st Qu. Median Mean 3rd Qu. Max.
16.00 46.00 59.00 58.78 69.00 92.00

optics$method: MBI
Min. 1st Qu. Median Mean 3rd Qu. Max.
16.00 52.00 61.00 63.43 84.00 92.00

------------------------------------------------------------
optics$method: traditional

Min. 1st Qu. Median Mean 3rd Qu. Max.
20.00 45.50 50.00 52.69 58.00 84.00

19.0776608329518

363.957142857143
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15.4000811686173

237.1625

Graphs/Plots:

• Boxplots (show a side by side comparison of the mean and spread of OptPost score data for
males (0) and females (1))

• Histograms (show a side by side comparison of the distribution (appearing normal) of OptPost
scores for each method group)

• Q-Q Plot (shows that the response variable (OptPost score) is approximately (not perfectly)
normally distributed and that the distribution for each method group is roughly the same
(this is can be observed by noticing the parallel-like linear trend in the plot) despite the values
not being the same)

• Scatter Plot (shows the relationship between OptPre and OptPost scores)

[5]: #Boxplots
ggplot(optics, aes(group=gender, x=gender, y=OptPost, color=gender)) +␣
↪→geom_boxplot() +

labs(x = "Gender", y = "OptPost Score", title = "OptScote by Gender")

#Histograms
ggplot(data=optics, aes(x=OptPost, fill=method)) +

geom_histogram() +
scale_fill_discrete(name = "Method") +
labs(x="OptPost Score", y = "Count", title = "Distribution of OptPost Scores␣

↪→by Method") +
facet_wrap(~method) +
theme_minimal()

#Q-Q Plot
ggplot(optics, aes(sample = OptPost)) + stat_qq(aes(color = method), alpha = 0.
↪→8) + scale_color_manual(values =c("firebrick1", "cyan2")) + labs(y =␣
↪→"OptPost")

#Scatterplot
ggplot(optics) + geom_point(aes(x = OptPre, y = OptPost, color=method)) +
labs(x = "OptPre Score", y = "OptPost Score", title = "OptPost vs. OptPre␣
↪→Scores")

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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b) Interpretation of Results: Based on this EDA, it appears that those that recieve the MBI
instruction method, on average, tend to produce slightly higher OptPost scores than those who
recieve the traditional instruction method. Moreover, test sores seem to be normally distributed
with a potential right skew (given the restults from the Q-Q plot above and the fact that sample
means are greater than the medians). Additionally, there seems to be a relationship (more linear
for the traditional group than the MBI group) between OptPre and OptPost scores. Specifically,
it appears that those who perform well on the OptPre tend to also perform well on the OptPost.
Given the relative position and spread of the data however, it is possible for some who perform
poorly on the OptPre to perform well on the OptPost (but, this is more so the case for those in the
MBI group, as can be observed in the scatter plot above). Lastly, as can be seen on the boxplots
above, there seems to be little to no relationship between gender and OptPost performance.

c) Model Selection:
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• Backward Selection

[6]: #Method 1: FWD, BWD, SW regression (http://www.sthda.com/english/articles/
↪→37-model-selection-essentials-in-r/154-stepwise-regression-essentials-in-r/)

#library(MASS)

#opt_model <- lm(OptPost ~ OptPre + gender + method_bin, data = optics)

#fit1 <- lm(OptPost ~ ., optics) #full model
#fit2 <- lm(OptPost ~ 1, optics) #null model
#stepAIC(fit1,direction="backward")
#stepAIC(fit2,direction="forward",scope=list(upper=fit1,lower=fit2))
#stepAIC(fit2,direction="both",scope=list(upper=fit1,lower=fit2))

#Method 2: FWD, BWD, SW regression (#https://stackoverflow.com/questions/
↪→55821462/
↪→how-can-i-perform-a-forward-selection-backward-selection-and-stepwise-regressi)

#Full and null models
#nullmod <- lm(OptPost ~ 1, data = optics)
#fullmod <- lm(OptPost ~ ., data = optics)

#Forward
#reg1A <- step(nullmod, scope = list(lower = nullmod, upper = fullmod),␣
↪→direction="forward")

#reg1A
#summary(reg1A)

#Backward
#reg1B <- step(nullmod, scope = list(lower = fullmod, upper = nullmod),␣
↪→direction="backward")

#reg1B
#summary(reg1B)

#Stepwise
#reg1C <- step(nullmod, scope = list(lower = fullmod, upper = nullmod),␣
↪→direction="both")

#reg1C
#summary(reg1C)

[7]: #Method 3: BWD selection (in-class)

#saturated model (all possible interaction terms)
m1 <- glm(OptPost ~ OptPre*method*gender, family=gaussian, data=optics)
summary(m1)

#model 2 (only 2-way interaction terms included)
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m2 <- glm(OptPost ~ OptPre*method + OptPre*gender + method*gender,␣
↪→family=gaussian, data=optics)

summary(m2)

#model 3 (removing the least beneficial 2-way interaction term)
m3 <- glm(OptPost ~ method*OptPre + method*gender, family=gaussian, data=optics)
summary(m3)

#model 4 (removing the least beneficial 2-way interaction term)
m4 <- glm(OptPost ~ method*gender + OptPre, family=gaussian, data=optics)
summary(m4)

#model 5 (removing gender covariate, and hence, the last interaction term -␣
↪→only OptPre and method covariates left)

m5 <- glm(OptPost ~ OptPre + method, family=gaussian, data=optics)
summary(m5)

Call:
glm(formula = OptPost ~ OptPre * method * gender, family = gaussian,

data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-26.7906 -6.6161 -0.9723 9.0781 24.8978

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.6253 7.1873 7.183 6.6e-08 ***
OptPre 0.4398 0.1643 2.676 0.01211 *
methodtraditional -42.5676 14.9409 -2.849 0.00798 **
gender -13.3555 13.4720 -0.991 0.32971
OptPre:methodtraditional 0.5559 0.3499 1.589 0.12297
OptPre:gender 0.1253 0.3680 0.340 0.73596
methodtraditional:gender 38.1092 23.3951 1.629 0.11414
OptPre:methodtraditional:gender -0.4999 0.5855 -0.854 0.40020
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 184.936)

Null deviance: 11884.3 on 36 degrees of freedom
Residual deviance: 5363.1 on 29 degrees of freedom
AIC: 307.13

Number of Fisher Scoring iterations: 2
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Call:
glm(formula = OptPost ~ OptPre * method + OptPre * gender + method *

gender, family = gaussian, data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-30.486 -6.159 -1.405 7.996 25.695

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.15922 6.94762 7.220 4.91e-08 ***
OptPre 0.47919 0.15701 3.052 0.00473 **
methodtraditional -35.56522 12.43227 -2.861 0.00763 **
gender -6.92954 11.12309 -0.623 0.53800
OptPre:methodtraditional 0.37738 0.27930 1.351 0.18674
OptPre:gender -0.07217 0.28494 -0.253 0.80177
methodtraditional:gender 19.82508 9.37783 2.114 0.04293 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 183.2654)

Null deviance: 11884 on 36 degrees of freedom
Residual deviance: 5498 on 30 degrees of freedom
AIC: 306.05

Number of Fisher Scoring iterations: 2

Call:
glm(formula = OptPost ~ method * OptPre + method * gender, family = gaussian,

data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-29.135 -6.695 -1.938 7.737 25.403

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.6951 6.5170 7.779 8.9e-09 ***
methodtraditional -34.7801 11.8565 -2.933 0.00626 **
OptPre 0.4648 0.1441 3.225 0.00297 **
gender -9.2782 6.0499 -1.534 0.13527
methodtraditional:OptPre 0.3586 0.2651 1.352 0.18604
methodtraditional:gender 19.3443 9.0441 2.139 0.04043 *
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 177.7329)

Null deviance: 11884.3 on 36 degrees of freedom
Residual deviance: 5509.7 on 31 degrees of freedom
AIC: 304.13

Number of Fisher Scoring iterations: 2

Call:
glm(formula = OptPost ~ method * gender + OptPre, family = gaussian,

data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-26.658 -7.077 -2.749 5.773 27.547

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 46.7495 5.9025 7.920 4.87e-09 ***
methodtraditional -20.7871 5.8637 -3.545 0.00123 **
gender -8.6577 6.1101 -1.417 0.16616
OptPre 0.5708 0.1225 4.658 5.36e-05 ***
methodtraditional:gender 18.4552 9.1362 2.020 0.05182 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 182.3366)

Null deviance: 11884.3 on 36 degrees of freedom
Residual deviance: 5834.8 on 32 degrees of freedom
AIC: 304.25

Number of Fisher Scoring iterations: 2

Call:
glm(formula = OptPost ~ OptPre + method, family = gaussian, data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-31.5572 -8.2133 0.5106 7.0163 31.1524

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 42.8545 5.3352 8.032 2.31e-09 ***
OptPre 0.5878 0.1254 4.690 4.32e-05 ***
methodtraditional -13.2761 4.6481 -2.856 0.00726 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 193.54)

Null deviance: 11884.3 on 36 degrees of freedom
Residual deviance: 6580.4 on 34 degrees of freedom
AIC: 304.7

Number of Fisher Scoring iterations: 2

d) Model Selection Conclusion: Based on the backward selection procedure, models 3, 4,
and 5 have the smallest AIC values with AIC’s of 304.13, 304.25, and 304.7 respectively. We can
assume that the difference in these AIC values comes from removing terms. However, given that
this difference is small, the intuition (from the EDA and model summaries) that gender plays little
if any role in OptPost scores (yet is included in models 3 and 4), and the fact that model 5 is the
most parsimonious of all models, it is safe to assume that model 5 fits and describes the data best:

E[Y ] = β0 + β1X1 + β2X2 = 42.8545 + 0.5878X1 − 13.2761X2.

e) Checking Model Fit & Model Assumptions:

Model Fit: Assessing the overall fit of the model: - GoF/Deviance: Comparing chosen model
to the saturated model - Wald Test: Checking individual parameters - ANOVA: Comparing linear
model to the saturated linear model (F-test) - R, R2, Adjusted R2 - AIC/BIC

Model Assumptions:

• Linearity (functional form for linear models): If Y and X have a linear relationship, there
should be no significant trend in the residuals with respect to Y . This can be assessed by
checking if a flexible fit of the mean of the residuals is constant (usually semi-straight line
around the mean).

• Normality: If residuals are normally distributed, the respective QQ-plot will display values
roughly along the diagonal line, especially near the center. The Shapiro–Wilk test is a formal
way to test for normality of residuals (we must have a p-value greater than 0.05, since the
null hypothesis assumes normality).

• Homoscedasticity (Constant Variance): If residuals are homoscedastic, we expect a flexible
fit of the mean of the transformed residuals (red line) to be almost constant about 1. But, if
there are clear non-constant patterns, then there is evidence of heteroscedasticity. A formal
test to check the null hypothesis of homoscedasticity in the residuals is the Breusch–Pagan test
(we must have a p-value greater than 0.05, since the null hypothesis assumes homoscedasticity,
that is, that the error variances are all equal).
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• Multicollinearity: If continuous predictors are not linearly related, then VIF is close to 1
(less than 5). To test for multicollinearity between categorical variables we use a Chi-Square
test for independence. And, to test for multicollinearity between categorical and continuous
variables, we use ANOVA or a t-test (depending on the number of groups in the categorical
variable).

• Outliers and Influential Points: If there are no outliers (observations with a response
far away from the regression plane), then the standardized residual of an observation is less
than 3 in absolute value. If there are no influential/high-leverage points (observations with a
relatively large effect on estimates of model coefficients), then the Cook’s distance is less than
1. Both outliers and high-leverage points can be identified with the residuals vs. leverage
plot.

Further:

• Functional forms of model covariates: Linearity (above)
• Adequate fit of the covariates in the model: Comparing standardized residuals with covariates

IN and NOT IN the model (to check for linearity and possible missing information)

Reference: https://bookdown.org/egarpor/PM-UC3M/lm-ii-diagnostics.html

Model Fit: Assess the overall fit of the model: - GoF/Deviance: observations - Wald Test:
observations - ANOVA: observations - R, R2, Adjusted R2: observations - AIC/BIC: observations

[8]: #GLM deviances, Wald tests, AIC, ANOVA

summary(m5) #chosen model
summary(m1) #saturated model

anova(m5, m1, test="F") #f test (more appropriate for this glm - gaussian)
anova(m5, m1, test="LRT") #log-likelihood ratio test

Call:
glm(formula = OptPost ~ OptPre + method, family = gaussian, data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-31.5572 -8.2133 0.5106 7.0163 31.1524

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.8545 5.3352 8.032 2.31e-09 ***
OptPre 0.5878 0.1254 4.690 4.32e-05 ***
methodtraditional -13.2761 4.6481 -2.856 0.00726 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 193.54)
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Null deviance: 11884.3 on 36 degrees of freedom
Residual deviance: 6580.4 on 34 degrees of freedom
AIC: 304.7

Number of Fisher Scoring iterations: 2

Call:
glm(formula = OptPost ~ OptPre * method * gender, family = gaussian,

data = optics)

Deviance Residuals:
Min 1Q Median 3Q Max

-26.7906 -6.6161 -0.9723 9.0781 24.8978

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.6253 7.1873 7.183 6.6e-08 ***
OptPre 0.4398 0.1643 2.676 0.01211 *
methodtraditional -42.5676 14.9409 -2.849 0.00798 **
gender -13.3555 13.4720 -0.991 0.32971
OptPre:methodtraditional 0.5559 0.3499 1.589 0.12297
OptPre:gender 0.1253 0.3680 0.340 0.73596
methodtraditional:gender 38.1092 23.3951 1.629 0.11414
OptPre:methodtraditional:gender -0.4999 0.5855 -0.854 0.40020
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 184.936)

Null deviance: 11884.3 on 36 degrees of freedom
Residual deviance: 5363.1 on 29 degrees of freedom
AIC: 307.13

Number of Fisher Scoring iterations: 2

A anova: 2 × 6

Resid. Df Resid. Dev Df Deviance F Pr(>F)
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 34 6580.359 NA NA NA NA
2 29 5363.143 5 1217.216 1.316365 0.2847214

A anova: 2 × 5

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
<dbl> <dbl> <dbl> <dbl> <dbl>

1 34 6580.359 NA NA NA
2 29 5363.143 5 1217.216 0.2536434
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[9]: #Linear model ANOVA, R, R^2, adjusted R^2

lm5 <- lm(OptPost ~ OptPre + method, data=optics) #chosen model
summary(lm5)
lm1 <- lm(OptPost ~ OptPre*gender*method, data=optics) #saturated model
summary(lm1)

anova(lm5, lm1, test="F")
anova(lm5, lm1, test="LRT")

Call:
lm(formula = OptPost ~ OptPre + method, data = optics)

Residuals:
Min 1Q Median 3Q Max

-31.5572 -8.2133 0.5106 7.0163 31.1524

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 42.8545 5.3352 8.032 2.31e-09 ***
OptPre 0.5878 0.1254 4.690 4.32e-05 ***
methodtraditional -13.2761 4.6481 -2.856 0.00726 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.91 on 34 degrees of freedom
Multiple R-squared: 0.4463, Adjusted R-squared: 0.4137
F-statistic: 13.7 on 2 and 34 DF, p-value: 4.322e-05

Call:
lm(formula = OptPost ~ OptPre * gender * method, data = optics)

Residuals:
Min 1Q Median 3Q Max

-26.7906 -6.6161 -0.9723 9.0781 24.8978

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 51.6253 7.1873 7.183 6.6e-08 ***
OptPre 0.4398 0.1643 2.676 0.01211 *
gender -13.3555 13.4720 -0.991 0.32971
methodtraditional -42.5676 14.9409 -2.849 0.00798 **
OptPre:gender 0.1253 0.3680 0.340 0.73596
OptPre:methodtraditional 0.5559 0.3499 1.589 0.12297
gender:methodtraditional 38.1092 23.3951 1.629 0.11414
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OptPre:gender:methodtraditional -0.4999 0.5855 -0.854 0.40020
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 13.6 on 29 degrees of freedom
Multiple R-squared: 0.5487, Adjusted R-squared: 0.4398
F-statistic: 5.037 on 7 and 29 DF, p-value: 0.0007952

A anova: 2 × 6

Res.Df RSS Df Sum of Sq F Pr(>F)
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 34 6580.359 NA NA NA NA
2 29 5363.143 5 1217.216 1.316365 0.2847214

A anova: 2 × 5

Res.Df RSS Df Sum of Sq Pr(>Chi)
<dbl> <dbl> <dbl> <dbl> <dbl>

1 34 6580.359 NA NA NA
2 29 5363.143 5 1217.216 0.2536434

Model Assumptions:

• Linearity: There is no evident linearity between the fitted values and residuals (plot 1).
Thus, we may conclude that this assumption holds.

• Normality: The Q-Q plot (plot 2) and Shapiro-Wilk normality test demonstrate that resid-
uals are normally distributed. Thus, we may conclude that this assumption holds.

• Homoscedasticity (Constant Variance): The abscence of a semi-straight line near 1 (plot
3), tells us that we might have some heteroscedasticity. However, the Breusch–Pagan test
with a p-value of 0.068 (greater than 0.05) confirms that we may not reject the null hypothesis
of homoscedasticity, and hence this assumption holds.

• Multicollinearity: The t-test to observe group differences between methods in terms of
OptPre scores, demonstrates that there is no significant difference between groups (p-value
greater than 0.05), and hence, the two variables are not correlated/collinear. Thus, we may
conclude that this assumption holds.

• Outliers and Influential Points: Given that the absolute value of standardized residuals
do not exceed 3 (plot 4) and the Cook’s distance is less than 1 (plot 5), we may conclude that
there are no outliers or influential points. Thus, this assumption holds.

[10]: #CHECKING MODEL ASSUMPTIONS

#Linearity (plot 1)
#no linearity between fitted values and residuals
#therefore, assumption is correct

#Normality (plot 2 and Shapiro–Wilk test)
#residuals are normally distributed in the QQ-Plot
#therefore, assumption is correct

#Homoscedasticity (plot 3 and Breusch–Pagan test)
#not really a semi-straight line near 1
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#p>0.05
#therefore, assumption is correct

#Multicollinearity (t-test)
#between 2 predictor variables (1 categorical and 1 numerical)
#p>0.05, there is no significant difference between groups and hence, they are␣
↪→not correlated/collinear

#therefore, assumption is correct

#Outliers and Influential Points (plots 4 and 5)
#|standardized residuals| not greater than 3 and cook's distance is less than 1
#no outliers or influential points
#therefore, assumption is correct

plot(m5)
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[11]: #Normality
#Null: data comes from a normally distributed population
#p>0.05
#therefore, assumption is correct

shapiro.test(rstandard(m5))

Shapiro-Wilk normality test

data: rstandard(m5)
W = 0.98699, p-value = 0.9355
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[12]: #Homoscedasticity
#Null: assumes error variances are all equal (homoscedasticity)
#p>0.05
#therefore, assumption is correct

library(lmtest)
bptest(m5)

Loading required package: zoo

Attaching package: ‘zoo’

The following objects are masked from ‘package:base’:

as.Date, as.Date.numeric

studentized Breusch-Pagan test

data: m5
BP = 5.3782, df = 2, p-value = 0.06794

[13]: #Multicollinearity
#between 2 predictor variables (1 categorical and 1 numerical)
#p>0.05, there is no significant difference between groups and hence, they are␣
↪→not correlated/collinear

#therefore, assumption is correct

mbi_df <- optics[which(optics$method == "MBI"), ]
t_df <- optics[which(optics$method == "traditional"), ]

t.test(mbi_df$OptPre, t_df$OptPre) #OptPre comparison for instruction methods

Welch Two Sample t-test

data: mbi_df$OptPre and t_df$OptPre
t = -0.72132, df = 34.987, p-value = 0.4755
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-16.449942 7.824942
sample estimates:
mean of x mean of y
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35.0000 39.3125

[14]: #Influential points
#no values exceed the threshold (1)
#therefore, assumption is correct

plot(cooks.distance(m5), ylim=c(0,1), main = "Cook's Distance for Influential␣
↪→Points")

abline(h = 1, lty = 2) #cutoff line at 1 (degress of freedom/number of␣
↪→observations is close to 1)

Further:
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• Functional forms of model covariates: There is no evident linearity between the fitted values
and residuals (plot 1 above). Thus, we may conclude that a linear model provides a decent
fit to the data.

• Adequate fit of the covariates in the model: There are no noticable patterns in the plotted
standardized residuals against covariates in the model (below), and the values seem to be
decently clustered around the mean. Threfore, these covariates adequately fit the model.
The additional covariate not included in the model also does not display a noticable pattern
in the distribution of residuals, but does not seem to provide any relevant information that
ought to be further explored. Still, a linear model seems to be the best fit for the data.

[15]: #Standardized residuals vs covariates IN the model
plot(optics$OptPre, rstandard(m5), pch=19, ylim=c(-3, 3))
plot(optics$method_bin, rstandard(m5), pch=19, ylim=c(-3, 3))

#Standardized residuals vs covariates NOT IN the model
plot(optics$gender, rstandard(m5), pch=19, ylim=c(-3, 3))

25



26



f) Predictive Accuracy: To assess the predictive accuracy of the chosen model (model 5), we
may appeal to the standard error, which provides an estimate of how close model predictions are to
observations (or how far observations fall from the fitted/regression line) in the units of the outcome
variable (in this case OptPost score). In other words, it is the standard deviation of the error term
in our model. Root Mean Squared Error (RMSE) and Residual Standard Error (RSE) are two
measures of standard error, which only differ in that the latter is unbiased. That is, while RMSE
uses a mean of squared residuals and hence, devides the sum by the sample size, RSE divides this
sum by the degrees of freedom (the sample size minus the number of variables in the model), and
is thus unbiased (despite being slightly larger). The formulas for RMSE and RSE are as follows:

RMSE =

√
ΣN
i=1(yi − ŷi)2

N
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RSE =

√
ΣN
i=1(yi − ŷi)2

df

The residual standard error (RSE) can be obtained from the summary table of the linear model
(lm5) above, but is also calculated in two ways below. This value prodides us with an unbiased
estimate of how “accurate” our model is. Thus, it provides an adequate measure of the predictive
power of the model. Given the standard error values computed below, we may infer that this model
predicts values that are on average 13-14 OptPost score units away from their true observations.
That is, given one’s OptPre score and the instructional method they recieved, the model will predict
an OptPost score that is approximately 13-14 units away from the actual OptPost score. Moreover,
from the summary tables above, we may notice that the RSE for saturated model is 13.6, which
is very close to the RSE of the more parsimonious model of choice (13.91). Therefore, given our
measure of predictive capability, our chosen model has almost the same level of predictive accuray
as the saturated model, yet only contains 2 covariates and 3 terms, as opposed to 3 covariates and
8 terms like the saturated model. To test this predictive power, it may be wise to use additional
test data. That is, we only know how well this model does at predicting OptPost scores on the
training data provided. However, to see whether it has the level of predictive accuracy we expect,
it serves us well to apply the it to new data.

[16]: #Predicted values vs. actual values
pva <- data.frame(actual = optics$OptPost, pred = predict(lm5))
plot(pva)

#predicted values, actual values, and residuals
pva_df <- pva %>% mutate(diff = actual - pred, sdiff = diff^2)
head(pva_df)

#largest and smallest residuals
max(abs(pva_df$diff))
min(abs(pva_df$diff))

A data.frame: 6 × 4

actual pred diff sdiff
<int> <dbl> <dbl> <dbl>

1 50 72.24603 -22.2460253 494.8856436
2 67 72.24603 -5.2460253 27.5207819
3 61 60.48942 0.5105799 0.2606918
4 92 82.23914 9.7608602 95.2743922
5 59 67.54338 -8.5433833 72.9893974
6 16 47.55715 -31.5571544 995.8539927

31.5571543826153

0.510579876235262
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[17]: #RMSE is close to residual standard error (difference comes from dividing by␣
↪→the df (sample size - #variables) instead of the sample size)

#mean divides by the sample size, so RMSE is more biased than residual standard␣
↪→error (RSE)

#RMSE
sqrt(mean(pva_df$sdiff))

#RSE (this value is observed in the lm5 summary table above)
sqrt(sum(pva_df$sdiff)/(nrow(pva_df)-3))

#Different way of calculating RMSE and RSE
#RMSE
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mse <- mean(summary(lm5)$residuals^2)
rmse <- sqrt(mse)
rmse

#RSE
sqrt(deviance(lm5)/df.residual(lm5))

13.335948788449

13.9118639733703

13.335948788449

13.9118639733703

g) Interpretation of Regression Coefficients:

E[Y ] = β0 + β1X1 + β2X2 = 42.8545 + 0.5878X1 − 13.2761X2.

The chosen model (model 5) not only tells us that gender (X3) and the relationship between OptPre
score (X1) and instruction method (X2) are not significant in predicting OptPost scores (Y ), but
that, independently, OptPre score and instruction method have statistically significant predictive
power over one’s OptPost score. Particularly, it holds that for every 1-unit increase in OptPre
score, we can expect an increase of about 0.59 in OptPost score, and moreover, that recieving a
traditional instruction method results in an expected OptPost score that is approximately 13.28
units smaller than it would’ve been under the MBI instruction method (or is approximately 13.28
units smaller than the OptPost score of someone who had the same OptPre score, but recieved
MBI instruction).

h) Results & Final Conclusion: Given the result of this analysis and the information obtained
by the models, it is safe to assume that a linear relationship exists between OptPre scores, instruc-
tion method, and OptPost scores. Particularly, it is evident that the former two play a significant
role in explaning some of the variation in the latter. Moreover, despite not knowing specifically
the extent to which the instruction method influences OptPost scores, it is safe to conclude, based
on the regression coefficients discussed previously, that the instruction method plays a much larger
role in determining OptPost scores than does the OptPre score. Furthermore, the difference in pre-
dicted OptPre scores that results from the inclusion or exclusion of the MBI instruction method,
allows us to infer that the newer instructuon method is more effective than the traditional one.
Thus, we may deduce not only that there exists a strong association between instruction method
and OptPost scores, but that the new instruction method (MBI) tends to produce overall higher
OptPost scores than the traditional one, making it more preferable.

1.1.2 Question 2:

The dataset “Adelaide_grads.csv” presents the survival 50 years after graduation of men and women
who graduated between 1938 and 1947 from various Faculties of the University of Adelaide (data
compiled by J.A. Keats).
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a) Perform a comprehensive EDA to inspect, understand and describe the information collected
in this dataset. Use appropriate summary statistics and plots to present your results from
the EDA. What do you observe?

Consider ONLY the information about the Faculties of Arts and Science (all years, both male and
female) and answer the following questions:

b) Fit an appropriate model to answer the following questions:

• Are the proportions of graduates who survived for 50 years after graduation the same for all
years of graduation?

• Are the proportions of graduates who survived for 50 years after graduation the same for
males and females?

• Are the proportions of male graduates who survived for 50 years after graduation the same
for Arts and Science?

• Are the proportions of female graduates who survived for 50 years after graduation the same
for Arts and Science?

• Is the difference between males and females in the proportion of graduates who survived for
50 years after graduation the same for Arts and Science?

c) Choose a model selection procedure (backward, forward, or stepwise) to find the model that
best fits your data. Check for all possible interactions terms among the covariates in the
model. Which model best fits the data?

d) Assess the overall fit of the “best” model using regression diagnostics to identify problems
indicating model inadequacy.

e) Use appropriate methods to assess the predictive accuracy of the “best” model.

f) Interpret all the regression coefficients of your “best” model.

Consider ONLY the information about male graduates (all years and Faculties) to answer the
following questions:

g) You are interested in assessing the association between major and survivorship. Choose
a model that best fits the data and answer this question using the respective regression
coefficients.

h) Assess the overall fit of the model.

i) Compare the predictive accuracy of this model with that of the “best” resulting model in the
previous part of Question 2.

[18]: #DATA WRANGLING

#importing "Adelaide_grads" data
df2 <- read.csv("/home/jovyan/AGLM/HW2/Adelaide_grads.csv")
head(df2)
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A data.frame: 6 × 5

year survive total faculty sex
<int> <int> <int> <chr> <chr>

1 1938 18 22 medicine men
2 1939 16 23 medicine men
3 1940 7 17 medicine men
4 1941 12 25 medicine men
5 1942 24 50 medicine men
6 1943 16 21 medicine men

[19]: #WE HAVE MISSING VALUES (for year 1946)....OMITTING DATA FOR THAT YEAR
#(substituting with 0 will result in bias)
#removing year with missing values (1946)
df2 <- subset(df2, year != 1946)
rownames(df2) <- 1:nrow(df2)

head(df2)
nrow(df2)
unique(df2$faculty)

A data.frame: 6 × 5

year survive total faculty sex
<int> <int> <int> <chr> <chr>

1 1938 18 22 medicine men
2 1939 16 23 medicine men
3 1940 7 17 medicine men
4 1941 12 25 medicine men
5 1942 24 50 medicine men
6 1943 16 21 medicine men

54

1. ’medicine’ 2. ’arts’ 3. ’science’ 4. ’engineering’

[20]: #adding column for number of people who died for binary grouped data
agrads <- df2 %>% mutate(passed=total-survive)

#adding column for the proportion of those who survived (out of the total for␣
↪→that given population) for EDA

agrads <- agrads %>% mutate(prop=survive/total)

#adding a column for categorical variable (year)
#since it is ordinal, we can do this instead of creating 8 dummy variables

#to create dummy variables we simply would convert year to factor:␣
↪→data$col <- factor(data$col)

#(this tells the model to treat it as categorical)

year <- c(1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945, 1947)
yrs <- c(1, 2, 3, 4, 5, 6, 7, 8, 9)
yr_df <- data.frame(year, yrs)
agrads <- agrads %>% full_join(yr_df, by="year")
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head(agrads)

A data.frame: 6 × 8

year survive total faculty sex passed prop yrs
<dbl> <int> <int> <chr> <chr> <int> <dbl> <dbl>

1 1938 18 22 medicine men 4 0.8181818 1
2 1939 16 23 medicine men 7 0.6956522 2
3 1940 7 17 medicine men 10 0.4117647 3
4 1941 12 25 medicine men 13 0.4800000 4
5 1942 24 50 medicine men 26 0.4800000 5
6 1943 16 21 medicine men 5 0.7619048 6

a) Exploratory Data Analysis (EDA) The variables in this dataset are as follows: - Outcome
(Y : graduates who survived after 50 years) - Covariate (X1: year, X2: faculty, X3: sex)

The primary outcome of interest is a categorical binary random variable with nominal scale (sur-
vived or passed), while the predictor variables (covariates) are discrete/categorical with ordinal
scale (X1); categorical with nominal scale (X2); and categorical/binary (X3).

This EDA consists of: - Descriptive Statistics - Scatterplot - Boxplots - Bar Graphs

Descriptive Statistics:

• Summary of survival proportion (minimum value, 1st quartile, median, mean, 3rd quartile,
maximum value) for the whole data and for each faculty group

• Summary of number of people who survived and number of people who passed (minimum
value, 1st quartile, median, mean, 3rd quartile, maximum value) for the whole data and for
each faculty group

• Standard deviation (SD) and variance of those who survived and those who passed
• Counting: Calculating the number of observations for each faculty group; the total number

of men and women in the data and those who survived; as well as the total, the number
survived, and the proportion of people alive in each faculty group

[21]: #summary of survival proportion and survival proportion by faculty group and by␣
↪→sex

summary(agrads$prop)
by(agrads$prop, agrads$faculty, summary, na.rm=TRUE)
by(agrads$prop, agrads$sex, summary, na.rm=TRUE)

#summary of survive and passed
summary(agrads$survive) #mean ~ 13
summary(agrads$passed) #mean ~ 5

#SD and variance of survive and passed
sd(agrads$survive)
var(agrads$survive)
sd(agrads$passed)
var(agrads$passed)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3333 0.6380 0.7584 0.7408 0.8534 1.0000

agrads$faculty: arts
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3333 0.5538 0.7009 0.6804 0.8182 1.0000
------------------------------------------------------------
agrads$faculty: engineering

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5000 0.6364 0.7143 0.7073 0.7600 0.8889
------------------------------------------------------------
agrads$faculty: medicine

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4118 0.4800 0.6957 0.6610 0.7619 0.8571
------------------------------------------------------------
agrads$faculty: science

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6316 0.7714 0.8496 0.8579 1.0000 1.0000

agrads$sex: men
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3333 0.5614 0.7050 0.6669 0.7714 0.8889
------------------------------------------------------------
agrads$sex: women

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6875 0.8182 0.8889 0.8887 1.0000 1.0000

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 8.00 12.00 12.81 16.00 32.00

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 2.000 5.000 5.259 7.000 26.000

6.96371749037927

48.4933612858141

4.69518093040644

22.0447239692523

[22]: #COUNTING
#NOTE: There are 760 total men in the data set, while only 216 total women␣
↪→(women make up about 22% of this data)

agrads %>% count(faculty) #there are only female populations for arts and␣
↪→science

by(agrads$total, agrads$sex, sum)
by(agrads$survive, agrads$sex, sum) #510/760 ~ 67% men survived, 182/216 ~ 84%␣
↪→women survived
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#populations by faculty
agrads %>% group_by(faculty) %>%

summarize(total = sum(total), survived = sum(survive), prop_survive =␣
↪→survived/total)

A data.frame: 4 × 2

faculty n
<chr> <int>
arts 18
engineering 9
medicine 9
science 18

agrads$sex: men
[1] 760
------------------------------------------------------------
agrads$sex: women
[1] 216

agrads$sex: men
[1] 510
------------------------------------------------------------
agrads$sex: women
[1] 182

A tibble: 4 × 4

faculty total survived prop_survive
<chr> <int> <int> <dbl>
arts 324 217 0.6697531
engineering 142 103 0.7253521
medicine 241 155 0.6431535
science 269 217 0.8066914

Graphs/Plots:

• Scatterplot (shows the relationship between graduation year and survival proportions for each
faculty group)

• Boxplots (show a side by side comparison of the mean and spread of survival proportion for
each faculty group)

• Bar graphs (show a side by side comparison of the change in survival proportions for men
and women over time)

[23]: #yearly survival proportions by faculty group
yearly_prop <- agrads %>%

group_by(year, faculty) %>%
summarize(total = sum(total), survived = sum(survive), prop_survive =␣

↪→survived/total)

#yearly survival proportions by sex
yearly_prop1 <- agrads %>%

group_by(year, sex) %>%
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summarize(total = sum(total), survived = sum(survive), prop_survive =␣
↪→survived/total)

#Scatterplot
ggplot(yearly_prop) + geom_point(aes(x=year, y=prop_survive, color=faculty)) +
labs(x = "Grad Year", y = "Survival Proportion", title = "Survival Proportions␣
↪→by Year")

#Boxplots
ggplot(yearly_prop, aes(group=faculty, x=faculty, y=prop_survive,␣
↪→color=faculty)) + geom_boxplot() +

labs(x = "Faculty", y = "Survival Proportion", title = "Survival Proportions by␣
↪→Faculty")

#Bar Graphs
ggplot(yearly_prop1, aes(x=year, y=prop_survive, fill=sex)) +␣
↪→geom_bar(stat="identity", position=position_dodge()) +

labs(x = "Grad Year", y = "Survival Proportion", title = "Survival Proportions␣
↪→by Year")

`summarise()` has grouped output by 'year'. You can override using the `.groups`
argument.

`summarise()` has grouped output by 'year'. You can override using the `.groups`
argument.
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b) Fitting a Model to Answer the Following: Considering ONLY information about the
Faculties of Arts and Science (all years, both male and female). - Are the proportions of graduates
who survived for 50 years after graduation the same for all years of graduation? - Given the model
coefficients, there is no significant difference in proportions of graduates who survived for 50 years
after graduation. The OR close to 1 tells us that proportions remained roughly the same for all
years of graduation. - Are the proportions of graduates who survived for 50 years after graduation
the same for males and females? - Given the model coefficients, the proportion of graduates who
survived for 50 years after graduation is greater for females than for males. - Are the proportions of
male graduates who survived for 50 years after graduation the same for Arts and Science? - Given
the model coefficients, the proportion of male graduates who survived for 50 years after graduation
is greater for Science than Arts. - Are the proportions of female graduates who survived for 50 years
after graduation the same for Arts and Science? - Given the model coefficients, the proportion of
female graduates who survived for 50 years after graduation is greater for Science than Arts. - Is the
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difference between males and females in the proportion of graduates who survived for 50 years after
graduation the same for Arts and Science? - Given the model coefficients, the difference between
males and females in the proportion of graduates who survived for 50 years after graduation is
slightly smaller for Science than Arts.

[24]: #Data for arts and science faculty ONLY
as_grads = agrads %>% filter(faculty == "arts" | faculty == "science")
head(as_grads)

A data.frame: 6 × 8

year survive total faculty sex passed prop yrs
<dbl> <int> <int> <chr> <chr> <int> <dbl> <dbl>

1 1938 16 30 arts men 14 0.5333333 1
2 1939 13 22 arts men 9 0.5909091 2
3 1940 11 25 arts men 14 0.4400000 3
4 1941 12 14 arts men 2 0.8571429 4
5 1942 8 12 arts men 4 0.6666667 5
6 1943 11 20 arts men 9 0.5500000 6

[25]: #MODEL
#NOTE: When making a matrix for grouped binary data, the first of the two␣
↪→columns should be the outcome of interest

#since we care about the proportion of grads who survived, this is the first␣
↪→column of our matrix

asg_matrix <- as.matrix(as_grads[, c("survive", "passed")])
grads_glm1 <- glm(asg_matrix ~ as_grads$yrs + as_grads$faculty + as_grads$sex,␣
↪→family=binomial(link="logit"))

summary(grads_glm1)

Call:
glm(formula = asg_matrix ~ as_grads$yrs + as_grads$faculty +

as_grads$sex, family = binomial(link = "logit"))

Deviance Residuals:
Min 1Q Median 3Q Max

-1.73853 -0.44267 0.09422 0.73504 2.58393

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07143 0.22285 -0.321 0.749
as_grads$yrs 0.05056 0.03693 1.369 0.171
as_grads$facultyscience 1.00314 0.21326 4.704 2.55e-06 ***
as_grads$sexwomen 1.27677 0.23053 5.538 3.05e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 80.903 on 35 degrees of freedom
Residual deviance: 28.684 on 32 degrees of freedom
AIC: 123.75

Number of Fisher Scoring iterations: 4

[26]: #OR for covariates (exponentiating coefficients)
exp(coef(grads_glm1))

(Intercept) 0.93106350689074 as\_grads\$yrs 1.05185648963447
as\_grads\$facultyscience 2.72682955214678 as\_grads\$sexwomen 3.58503190822848

Interpretation of Coefficients:

• Although year is not statistically significant, the model tells us that the odds of survival
increase by a factor of e0.05056 ≈ 1.05 for every unit increase in year.

• The odds of survival are e1.00314 ≈ 2.73 greater for science faculty than for arts faculty.
• The odds of survival are e1.27677 ≈ 3.59 greater for women than for men.

[27]: #ORs and 95% CI
#Notice that the CI for years OR includes 1 (therefore it is not statistically␣
↪→significant)

exp(cbind(OR = coef(grads_glm1), confint(grads_glm1)))

Waiting for profiling to be done…

A matrix: 4 × 3 of type dbl

OR 2.5 % 97.5 %
(Intercept) 0.9310635 0.6012728 1.442597

as_grads$yrs 1.0518565 0.9784188 1.131051
as_grads$facultyscience 2.7268296 1.8040035 4.166391

as_grads$sexwomen 3.5850319 2.3048509 5.700151

[28]: #Proportions of Survival
#using the inverse of logit (expit) to calculate survival proportions for each␣
↪→scenario

exp(-0.07143+1.27677)/(1+exp(-0.07143+1.27677)) #females
exp(-0.07143)/(1+exp(-0.07143)) #males

exp(-0.07143+1.27677+1.00314)/(1+exp(-0.07143+1.27677+1.00314)) #females in␣
↪→science

exp(-0.07143+1.27677)/(1+exp(-0.07143+1.27677)) #females in arts

exp(-0.07143+1.00314)/(1+exp(-0.07143+1.00314)) #males in science
exp(-0.07143)/(1+exp(-0.07143)) #males in arts
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(exp(-0.07143+1.27677+1.00314)/(1+exp(-0.07143+1.27677+1.00314)))-(exp(-0.
↪→07143+1.00314)/(1+exp(-0.07143+1.00314))) #females-males in science

(exp(-0.07143+1.27677)/(1+exp(-0.07143+1.27677)))-(exp(-0.07143)/(1+exp(-0.
↪→07143))) #females-males in arts

0.769473377348014

0.48215008890617

0.901008437238705

0.769473377348014

0.717422078607233

0.48215008890617

0.183586358631471

0.287323288441844

c) Model Selection:

• Backward Selection

Based on the backward selection procedure, models 4 and 5 display the smallest AIC values of
208.56, and 210.01, respectively. Given that model 5 is the most parsimoneous of the two and the
fact that the “year” variable is not statistically sigificant, it is safe to assume that model 5 fits and
describes this data best:

g(E[Y ]) = β0 + β2eX2e + β2mX2m + β2sX2s + β3X3

= 0.1560 + 0.8152X2e + 0.4331X2m + 1.0668X2s + 1.2984X3.

[29]: #BWD selection

#matrix for grouped data
g_matrix <- as.matrix(agrads[, c("survive", "passed")])

#saturated model (all possible interaction terms)
g_glm1 <- glm(g_matrix ~ yrs*faculty*sex, family=binomial(link="logit"),␣
↪→data=agrads)

summary(g_glm1)

#model 2 (only 2-way interaction terms included)
g_glm2 <- glm(g_matrix ~ yrs*faculty + yrs*sex + faculty*sex,␣
↪→family=binomial(link="logit"), data=agrads)

summary(g_glm2)
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#model 3 (removing the least beneficial 2-way interaction term)
g_glm3 <- glm(g_matrix ~ yrs*faculty + yrs*sex, family=binomial(link="logit"),␣
↪→data=agrads)

summary(g_glm3)

#model 4 (additive model with only the main effects)
g_glm4 <- glm(g_matrix ~ yrs + faculty + sex, family=binomial(link="logit"),␣
↪→data=agrads)

summary(g_glm4)

#model 5 (removing the least beneficial covariate) <- BEST MODEL
g_glm5 <- glm(g_matrix ~ faculty + sex, family=binomial(link="logit"),␣
↪→data=agrads)

summary(g_glm5)

#model 6 (null model)
g_glm6 <- glm(g_matrix ~ 1, family=binomial(link="logit"), data=agrads)
summary(g_glm6)

Call:
glm(formula = g_matrix ~ yrs * faculty * sex, family = binomial(link = "logit"),

data = agrads)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3082 -0.4845 0.0521 0.6775 2.4523

Coefficients: (4 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.31992 0.29740 1.076 0.282
yrs -0.02850 0.05600 -0.509 0.611
facultyengineering 0.49650 0.51292 0.968 0.333
facultymedicine -0.09305 0.42836 -0.217 0.828
facultyscience 0.17038 0.49446 0.345 0.730
sexwomen 0.62198 0.50579 1.230 0.219
yrs:facultyengineering 0.05504 0.08545 0.644 0.520
yrs:facultymedicine 0.09838 0.07788 1.263 0.206
yrs:facultyscience 0.15119 0.08637 1.750 0.080 .
yrs:sexwomen 0.12195 0.09491 1.285 0.199
facultyengineering:sexwomen NA NA NA NA
facultymedicine:sexwomen NA NA NA NA
facultyscience:sexwomen 1.15633 1.63211 0.708 0.479
yrs:facultyengineering:sexwomen NA NA NA NA
yrs:facultymedicine:sexwomen NA NA NA NA
yrs:facultyscience:sexwomen -0.13195 0.26784 -0.493 0.622
---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 113.89 on 53 degrees of freedom
Residual deviance: 48.88 on 42 degrees of freedom
AIC: 215.93

Number of Fisher Scoring iterations: 4

Call:
glm(formula = g_matrix ~ yrs * faculty + yrs * sex + faculty *

sex, family = binomial(link = "logit"), data = agrads)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3082 -0.4853 0.0285 0.6851 2.4577

Coefficients: (2 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.29359 0.29236 1.004 0.3153
yrs -0.02269 0.05474 -0.414 0.6786
facultyengineering 0.52283 0.51001 1.025 0.3053
facultymedicine -0.06671 0.42488 -0.157 0.8752
facultyscience 0.24057 0.47448 0.507 0.6121
sexwomen 0.69900 0.48278 1.448 0.1477
yrs:facultyengineering 0.04923 0.08463 0.582 0.5608
yrs:facultymedicine 0.09257 0.07698 1.203 0.2292
yrs:facultyscience 0.13736 0.08170 1.681 0.0927 .
yrs:sexwomen 0.10528 0.08856 1.189 0.2345
facultyengineering:sexwomen NA NA NA NA
facultymedicine:sexwomen NA NA NA NA
facultyscience:sexwomen 0.45446 0.67125 0.677 0.4984
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 113.891 on 53 degrees of freedom
Residual deviance: 49.125 on 43 degrees of freedom
AIC: 214.17

Number of Fisher Scoring iterations: 4

Call:
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glm(formula = g_matrix ~ yrs * faculty + yrs * sex, family = binomial(link =␣
↪→"logit"),

data = agrads)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3082 -0.4929 0.0493 0.7432 2.5034

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.27557 0.28961 0.952 0.3413
yrs -0.02471 0.05428 -0.455 0.6489
facultyengineering 0.54086 0.50844 1.064 0.2874
facultymedicine -0.04869 0.42299 -0.115 0.9084
facultyscience 0.29984 0.46275 0.648 0.5170
sexwomen 0.75047 0.47329 1.586 0.1128
yrs:facultyengineering 0.05125 0.08434 0.608 0.5434
yrs:facultymedicine 0.09460 0.07666 1.234 0.2172
yrs:facultyscience 0.13750 0.08075 1.703 0.0886 .
yrs:sexwomen 0.11011 0.08729 1.262 0.2071
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 113.89 on 53 degrees of freedom
Residual deviance: 49.62 on 44 degrees of freedom
AIC: 212.67

Number of Fisher Scoring iterations: 4

Call:
glm(formula = g_matrix ~ yrs + faculty + sex, family = binomial(link = "logit"),

data = agrads)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.31717 -0.47299 0.09366 0.80456 2.58446

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07426 0.19375 -0.383 0.70152
yrs 0.05119 0.02754 1.859 0.06308 .
facultyengineering 0.74931 0.24285 3.086 0.00203 **
facultymedicine 0.39719 0.20210 1.965 0.04937 *
facultyscience 1.00238 0.21120 4.746 2.07e-06 ***
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sexwomen 1.27655 0.23038 5.541 3.01e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 113.891 on 53 degrees of freedom
Residual deviance: 53.509 on 48 degrees of freedom
AIC: 208.56

Number of Fisher Scoring iterations: 4

Call:
glm(formula = g_matrix ~ faculty + sex, family = binomial(link = "logit"),

data = agrads)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3526 -0.6661 0.1745 0.6781 2.5398

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.1560 0.1491 1.046 0.295705
facultyengineering 0.8152 0.2400 3.397 0.000681 ***
facultymedicine 0.4331 0.2008 2.157 0.031006 *
facultyscience 1.0668 0.2082 5.123 3.01e-07 ***
sexwomen 1.2984 0.2298 5.649 1.61e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 113.891 on 53 degrees of freedom
Residual deviance: 56.965 on 49 degrees of freedom
AIC: 210.01

Number of Fisher Scoring iterations: 4

Call:
glm(formula = g_matrix ~ 1, family = binomial(link = "logit"),

data = agrads)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.3860 -0.5305 0.5443 1.2431 2.9901
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.89061 0.07047 12.64 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 113.89 on 53 degrees of freedom
Residual deviance: 113.89 on 53 degrees of freedom
AIC: 258.94

Number of Fisher Scoring iterations: 4

d) Checking Model Fit: Assessing the overall fit of the model: - Deviance: LRT between cho-
sen model and saturated model - When comparing then chosen model (5) with the saturated model,
we obtain a p-value greater than 0.05. This indicates that we may not reject the null hypothesis,
which states that both models fit the data equally well (notice they have very close deviances).
Therefore, we may assume that our model is a good fit for the data, yet more parsimoneous than
the saturated model. - Similarly, obtaining a significant p-value in the LRT between the chosen
model (5) and the null model indicates that both do not fit the data equally well. As the null model
is the worst fit for the data, we may conclude that conversely, the chosen model is a good fit.

Assessing the fit of particular observations (Regression Diagnostics): - Outliers: Standardized
Residuals ~ N(0, 1) - In the plots below we observe that the standardized residuals are normally
distributed (Q-Q plot), and that their absolute values do not exceed 3. Thus, we have no outliers in
the data. - Influential Points: Cook’s distance < 1, dfbetas < 1 ~ N(0, 1) - In the plots below we
observe that the Cook’s distance of each value is less than 1 and that there are no dfbetas greater
than 1. Thus, we have no influential points in the data.

[30]: #DEVIANCE

#LRT (same as Chisq)
#NULL: both fit the data equally well
#p>0.05 (when comparing model 5 with the saturated model)
#therefore, we do not reject the null and assume that our model is a good fit␣
↪→for the data

#LRT for model 5 and saturated model
anova(g_glm5, g_glm1, test="LRT") #anova(g_glm4, g_glm1, test="Chisq")

#LRT for model 5 and null model (should have p<0.05)
anova(g_glm5, g_glm6, test="LRT")

#deviances are close
deviance(g_glm5)
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deviance(g_glm1)

A anova: 2 × 5

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
<dbl> <dbl> <dbl> <dbl> <dbl>

1 49 56.96460 NA NA NA
2 42 48.88015 7 8.08445 0.3252061

A anova: 2 × 5

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
<dbl> <dbl> <dbl> <dbl> <dbl>

1 49 56.9646 NA NA NA
2 53 113.8907 -4 -56.92608 1.282145e-11

56.9645963125992

48.8801458788273

[31]: #REGRESSION DIAGNOSTICS

#Outliers (plots 2 and 4)
#standardized residual are normally distributed (Q-Q plot)
#|standardized residuals| not greater than 3
#therefore, no outliers

#Influential Points (plot 5)
#Cook's distance is less than 1 (no values exceed the threshold)
#DFBETAS less than 1
#therefore, no influential points

plot(g_glm5)

plot(cooks.distance(g_glm5), ylim=c(0,1), main = "Cook's Distance for␣
↪→Influential Points")

abline(h = 1, lty = 2) #cutoff line at 1 (degress of freedom/number of␣
↪→observations is close to 1)

if (sum(abs(dfbetas(g_glm5))>1)) {print("dfbetas > 1")}
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e) Predictive Accuracy/Power: Assessing the predictive accuracy of the chosen model: - Clas-
sification Table: - ROC: Graph of specificity against sensitivity (‘fpr’ against ‘tpr’) “illustrates the
diagnostic ability of a binary classifier system as its discrimination threshold is varied”. “Classifiers
that give curves closer to the top-left corner indicate a better performance. As a baseline, a random
classifier is expected to give points lying along the diagonal (FPR = TPR). The closer the curve
comes to the 45-degree diagonal of the ROC space, the less accurate the test”. - The ROC below
shows us that although our model’s predictions are not random, they are not accurate enough to
make the model reliable. - AUC: Area under the ROC “is equivalent to the probability that a
randomly chosen positive instance is ranked higher than a randomly chosen negative instance”. It
tells us how much the model is capable of distinguishing between classes (equivalent to the concor-
dance index or c-statistic). “The higher the AUC, the better the model is at predicting 0 classes as
0 and 1 classes as 1”. - In the plot below, we obtain an AUC of 0.6412, which means that there is a
64% chance that our model will be able to accurately predict a survival case versus a non-survival

53



case. This provides an overview of our model’s predictive power. Given that an AUC of 0.5 would
indicate that our model is 50% accurate and its predictions are purely random, it is safe to assume
that it does not have very high predictive power. - Correlation Measure: Corr(y, µ̂) - Corre-
lation coefficients of observed y’s and predicted y’s (from the chosen model), tell us the direction
and strength of their linear relationship. A positive correlation close to 1 indicates a perfect linear
relationship between observed and predicted values (that is, it idicates that the model is perfectly
accurate). A correlation of 0 would indicate no linear relationship and suggest randomness in model
predictions. - Having obtained a correlation coefficient of 0.2323 indicates that there is a weak pos-
itive linear relationship between observations in the data and our model’s predicted values. This
suggests that although a positive association does exists between observed and predicted values, it
is not a very strong one. Thus, we can infer that our model isn’t extremely successful at accurately
predicting survival and non-survival cases, and hence, has minimal predictive power.

References: - https://en.wikipedia.org/wiki/Receiver_operating_characteristic
- https://www.displayr.com/what-is-a-roc-curve-how-to-interpret-it/ -
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

[32]: #UNGROUPING DATA FOR PREDICTIVE ACCURACY

#ungrouped dataset
ug_agrads <- agrads %>%

select(-c(passed, prop)) %>%
uncount(total) %>%
group_by(faculty, sex, year) %>%
mutate(survive = as.integer(row_number() <= survive[1]))

head(ug_agrads)

#ungrouped glm for chosen model (5)
#coefficients should be the same as the grouped glm (below)
ug_glm <- glm(survive ~ faculty + sex, family=binomial(link="logit"),␣
↪→data=ug_agrads)

summary(ug_glm)

#summary of grouped glm for chosen model (5):
#(Intercept) 0.1560 0.1491 1.046 0.295705
#facultyengineering 0.8152 0.2400 3.397 0.000681 ***
#facultymedicine 0.4331 0.2008 2.157 0.031006 *
#facultyscience 1.0668 0.2082 5.123 3.01e-07 ***
#sexwomen 1.2984 0.2298 5.649 1.61e-08 ***

976

Error in nrow(ug_agrads): object 'ug_agrads' not found
Traceback:

1. nrow(ug_agrads)
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[ ]: #ROC and AUC
#ROC: Specificity against Sensitivity (‘fpr’ against ‘tpr’)
#AUC = Concordance Index C-statistic: Probability of accurate predictions
library(pROC)

multiclass.roc(ug_agrads$survive, ug_glm$fitted.values, plot=TRUE)

[ ]: #Correlation Measure
#weak positive linear relationship
cor(ug_agrads$survive, ug_glm$fitted.values)

f) Interpretation of Regression Coefficients:

g(E[Y ]) = β0 + β2eX2e + β2mX2m + β2sX2s + β3X3

= 0.1560 + 0.8152X2e + 0.4331X2m + 1.0668X2s + 1.2984X3.

The chosen model (model 5) tells us that, independently, faculty and sex play a statistically sig-
nificant role in explaining people’s survival 50 years after graduating from University of Adelaide.
Particularly, it holds that the odds of survival are e1.2984 ≈ 3.66 greater for women than for men.
Moreover, it suggests that, compared to the arts faculty (reference group), the odds of survival
are e0.8152 ≈ 2.26 greater for engineering faculty, e0.4331 ≈ 1.54 greater for medicine faculty, and
e1.0668 ≈ 2.91 greater for science faculty.

[ ]: exp(1.2984) #female faculty
exp(0.8152) #engineering faculty
exp(0.4331) #medicine faculty
exp(1.0668) #science faculty

Fitting a Model for the Following: Considering ONLY information about male graduates (all
years and Faculties). - g) Assessing Variable Association: Major/Faculty and Survivorship - h)
Checking Model Fit - i) Comparing Predictive Accuracy

[ ]: #Data for male faculty ONLY
male_ug_agrads = ug_agrads %>% filter(sex == "men")

#GLM for faculty and survivorship association
male_ug_agrads$faculty <- factor(male_ug_agrads$faculty, levels=c("arts",␣
↪→"engineering", "medicine", "science")) %>% #changing ordered factor to␣
↪→ordinary factor

relevel(male_ug_agrads$faculty, ref='arts') #specifying a reference group␣
↪→for categorial variable 'faculty'

male_glm <- glm(survive ~ faculty, family=binomial(link="logit"),␣
↪→data=male_ug_agrads)

summary(male_glm)
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g) Assessing Variable Association: To assess the association between major/faculty and sur-
vivorship for male graduates, we fit the following glm:

g(E[Y ]) = β0 + β2eX2e + β2mX2m + β2sX2s

= 0.1911 + 0.7801X2e + 0.3980X2m + 0.9923X2s.

The beta coefficients in this model tell us that, compared to the male arts faculty (reference group),
the odds of survival are e0.7801 ≈ 2.18 greater for male engineering faculty, e0.3980 ≈ 1.49 greater
for male medicine faculty, and e0.9923 ≈ 2.7 greater for male science faculty. These odds ratios
parallel the ones calculated for both male and female faculty. However, we can assume that values
are greater when taking into account female faculty, as they have overall higher odds of suvival
than males.

[ ]: exp(0.7801) #engineering faculty
exp(0.3980) #medicine faculty
exp(0.9923) #science faculty

[ ]: mf_or <- c(exp(0.8152), exp(0.4331), exp(1.0668))
m_or <- c(exp(0.7801), exp(0.3980), exp(0.9923))
ors <- data.frame(mf_or, m_or)
ors %>% mutate(diff = mf_or-m_or)

h) Checking Model Fit: Assessing the overall fit of the model: - Deviance: LRT between
chosen model and null model - When comparing this model to the null model, we obtain a p-value
less than 0.05. This indicates that both models do not fit the data equally well, and we may thus
reject the null hypothesis. Given that the null model is the worst fit for the data, we may conclude
that this model is a good fit.

Assessing the fit of particular observations (Regression Diagnostics): - Outliers: Standardized
Residuals ~ N(0, 1) - In the first plot below we observe that the absolute values of standardized
residuals do not exceed 3. Thus, there are no outliers in the data. - Influential Points: Cook’s
distance < 1, dfbetas < 1 ~ N(0, 1) - In the second plot below we observe that the Cook’s distance of
each value is less than 1 and that there are no dfbetas greater than 1. Thus, we have no influential
points in the data.

[ ]: #DEVIANCE

#LRT (same as Chisq)
#NULL: both fit the data equally well
#p<0.05
#therefore, we reject the null and assume that this model is a good fit for the␣
↪→data

#null model
male_glm_null <- glm(survive ~ 1, family=binomial(link="logit"),␣
↪→data=male_ug_agrads)
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#LRT for model 5 and null model (should have p<0.05)
anova(male_glm, male_glm_null, test="LRT")

[ ]: #REGRESSION DIAGNOSTICS

#Outliers (plot 1 - standardized residuals vs. fitted values)
#|standardized residuals| not greater than 3
#therefore, no outliers

plot(fitted(male_glm), rstandard(male_glm), pch=19, ylim=c(-3,3), main =␣
↪→"Standardized Residuals vs. Fitted Values for Outliers")

abline(h = 0, lty = 2, lwd = 2)
abline(h = -3, lty = 3)
abline(h = 3, lty = 3)

#Influential Points (plot 2 - Cook's distance)
#Cook's distance is less than 1 (no values exceed the threshold)
#DFBETAS less than 1
#therefore, no influential points

plot(cooks.distance(male_glm), ylim=c(0,1), main = "Cook's Distance for␣
↪→Influential Points")

abline(h = 1, lty = 2) #cutoff line at 1 (degress of freedom/number of␣
↪→observations is close to 1)

if (sum(abs(dfbetas(male_glm))>1)) {print("dfbetas > 1")}

Model AUC Corr
Male & Female 0.6412 0.2323
Male 0.6017 0.1732

i) Comparing Predictive Accuracy: As expected, given the regression coefficients of this and
the previous model, the predictive accuracy of the model including female faculty is slightly greater
than that of this model, yet neither is very strong. While the AUC of the previous model tells us that
there is a 64% chance it will accurately predict survival versus non-survival cases, the AUC of this
model tells us that this probability decreases to 60% when considering only male faculty. Likewise,
the correlation coefficient, which went from 0.2323 in the previous model to 0.1732 in this model,
indicates that removing female faculty from the data results in an even weaker positive linear
relationship between observations and predicted values. Although accounting for female faculty
does increase the predictive accuracy of the model, it is difficult to determine whether sex truly
plays a role in survivorship as we have inconsistent and limited data for females. That is, assessing
the relationship between major/faculty and survivorship only in terms of male faculty removes a
level of bias by providing more consistency within the data. Aside from this discrpency between
the models however, both shed light on the extent to which major/faculty influences survivorship.
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Given the limited predictive capabilities of the models, we may infer that although considering
major/faculty will generally produce more accurate predictions than completely randomized ones,
this predictor on its own is not sufficient to make our model truly reliable.

[ ]: #PREDICTIVE ACCURACY
#ROC and AUC
#ROC: Specificity against Sensitivity (‘fpr’ against ‘tpr’)
#AUC = Concordance Index C-statistic: Probability of accurate predictions
multiclass.roc(male_ug_agrads$survive, male_glm$fitted.values, plot=TRUE)

[ ]: #Correlation Measure
#weak positive linear relationship
cor(male_ug_agrads$survive, male_glm$fitted.values)

[ ]: #COMPARISON
model <- c("Male & Female", "Male")
AUC <- c(0.6412, 0.6017)
Corr <- c(0.2323, 0.1732)
pa_comparison <- data.frame(model, AUC, Corr)
pa_comparison

1.1.3 Question 3:

The dataset “Beetle_mortality.csv” includes information from the Bliss (1935) study, about the
numbers of beetles dead after five hours of exposure to gaseous carbon disulphide at various con-
centrations (example presented in class).

The primary objective is to evaluate the effect of dose on the beetles’ mortality. For this purpose,
use this dataset to fit GLMs for binary data. There is not restriction on the form (continuous,
discrete, power transformation, number of groups, etc.) of the independent variable (dose) that
you will include in the model. Just choose one form and work with it for answering the following
questions:

a) Fit 3 different models using the following link functions:

• Logit
• Probit
• C-Log-Log

b) Interpret the regression coefficient estimate of the predictor in each of the 3 models.

[ ]: #DATA WRANGLING

#importing "Beetle_mortality" data
beetles <- read.csv("/home/jovyan/AGLM/HW2/Beetle_mortality.csv")

#creating column for beetles alive
beetles <- beetles %>% mutate(alive = number-killed, prop_killed = killed/
↪→number)
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head(beetles)

a) Model Fits for Different Link Functions:

• Logit
• Probit
• C-Log-Log

[ ]: #matrix for grouped data
b_matrix <- as.matrix(beetles[, c("killed", "alive")])

#LOGIT
b_logit <- glm(b_matrix ~ dose, family=binomial(link="logit"), data=beetles)
summary(b_logit)

#PROBIT
b_probit <- glm(b_matrix ~ dose, family=binomial(link="probit"), data=beetles)
summary(b_probit)

#C-LOG-LOG
b_cloglog <- glm(b_matrix ~ dose, family=binomial(link="cloglog"), data=beetles)
summary(b_cloglog)

[ ]: #MODEL COMPARISON

fits <- function(model){
fit_p <- unique(fitted.values(model))
fit_n <- as.vector(table(fitted.values(model)))
fit_y <- fit_p*fit_n
return(list("Fitted_Y"=fit_y, "Fitted_P"=fit_p))

}

#estimated number of beetles killed in each group
cbind(beetles$killed, fits(b_logit)[[1]], fits(b_probit)[[1]],␣
↪→fits(b_cloglog)[[1]])

#estimated proportion of beetles killed in each group
cbind(beetles$killed, fits(b_logit)[[2]], fits(b_probit)[[2]],␣
↪→fits(b_cloglog)[[2]])

[ ]: #Actual vs. Logit
plot(x=beetles$dose, y=beetles$prop_killed, frame=FALSE, type="b", pch=19,␣
↪→col="black", xlab="Dose", ylab="Proportion Killed")

lines(x=beetles$dose, y=fits(b_logit)[[2]], type="b", pch=18, col="red", lty=2)
legend("topleft", legend=c("Actual", "Logit"), col=c("black", "red"), lty = 1:
↪→2, cex=0.8)
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[ ]: #Actual vs. Probit
plot(x=beetles$dose, y=beetles$prop_killed, frame=FALSE, type="b", pch=19,␣
↪→col="black", xlab="Dose", ylab="Proportion Killed")

lines(x=beetles$dose, y=fits(b_probit)[[2]], type="b", pch=18, col="blue",␣
↪→lty=2)

legend("topleft", legend=c("Actual", "Logit"), col=c("black", "blue"), lty = 1:
↪→2, cex=0.8)

[ ]: #Actual vs. C-Log-Log
plot(x=beetles$dose, y=beetles$prop_killed, frame=FALSE, type="b", pch=19,␣
↪→col="black", xlab="Dose", ylab="Proportion Killed")

lines(x=beetles$dose, y=fits(b_cloglog)[[2]], type="b", pch=18, col="green",␣
↪→lty=2)

legend("topleft", legend=c("Actual", "Logit"), col=c("black", "green"), lty = 1:
↪→2, cex=0.8)

b) Interpretation of Predictor Coefficients: Logit:

g(E[Y ]) = β0 + β1X1 = −60.717 + 34.270X1

A beetle’s odds of being killed increases by a factor of e34.270 (exp(34.270)) for every one-unit
increase in dose.

Probit:
g(E[Y ]) = β0 + β1X1 = −34.935 + 19.728X1

A beetle’s likelihood of being killed by a dose that is less than or equal to some dose, x, is given by
pnorm((19.728*x) - 34.935). Moreover, for a one-unit increase in dose, the z-score attributed
to dose in the standard normal curve increases by 19.728.

C-Log-Log:
g(E[Y ]) = β0 + β1X1 = −39.572 + 22.041X1

A beetle’s probability of being killed by some dose, x, or P (Y = 1|X = x), is given by 1 −
e−e22.041x−39.572 (1-(exp(-exp((22.041*x)-39.572)))).

[ ]: min(beetles$dose)
max(beetles$dose)

[ ]: #INVERSE PROBIT
#(area under the standard normal curve to the left of x dose - cumulative␣
↪→probabilities at different doses)

#Notice that we get almost 0 probability for the first 4 inputs because there␣
↪→are not doses in the data

#(doses range from 1.6907 to 1.8839 - between the last two, that is why we go␣
↪→from ~0 to ~1)

pnorm((19.728*0) - 34.935) #not a dose in the model
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pnorm((19.728*0.5) - 34.935) #not a dose in the model
pnorm((19.728*1) - 34.935) #not a dose in the model
pnorm((19.728*1.5) - 34.935) #not a dose in the model
pnorm((19.728*2) - 34.935) #not a dose in the model

[ ]: #Cumulative probabilities for every 0.01 increase in dose
#Notice that probabilities range from ~0 to ~1
pnorm((19.728*1.68) - 34.935)
pnorm((19.728*1.69) - 34.935)
pnorm((19.728*1.7) - 34.935)
pnorm((19.728*1.71) - 34.935)
pnorm((19.728*1.72) - 34.935)
pnorm((19.728*1.73) - 34.935)
pnorm((19.728*1.74) - 34.935)
pnorm((19.728*1.75) - 34.935)
pnorm((19.728*1.76) - 34.935)
pnorm((19.728*1.77) - 34.935)
pnorm((19.728*1.78) - 34.935)
pnorm((19.728*1.79) - 34.935)
pnorm((19.728*1.8) - 34.935)
pnorm((19.728*1.81) - 34.935)
pnorm((19.728*1.82) - 34.935)
pnorm((19.728*1.83) - 34.935)
pnorm((19.728*1.84) - 34.935)
pnorm((19.728*1.85) - 34.935)
pnorm((19.728*1.86) - 34.935)
pnorm((19.728*1.87) - 34.935)
pnorm((19.728*1.88) - 34.935)
pnorm((19.728*1.89) - 34.935)

[ ]: #Incremental differences in cumulative probabilities for every 0.01 increase in␣
↪→dose

#Notice that these values resemble a normal curve
#Imagining these differences as small slices along the curve with equal width␣
↪→(x)

#We can see why the their areas would be smaller at the tails and largest in␣
↪→the middle

pnorm((19.728*1.69) - 34.935) - pnorm((19.728*1.68) - 34.935)
pnorm((19.728*1.7) - 34.935) - pnorm((19.728*1.69) - 34.935)
pnorm((19.728*1.71) - 34.935) - pnorm((19.728*1.7) - 34.935)
pnorm((19.728*1.72) - 34.935) - pnorm((19.728*1.71) - 34.935)
pnorm((19.728*1.73) - 34.935) - pnorm((19.728*1.72) - 34.935)
pnorm((19.728*1.74) - 34.935) - pnorm((19.728*1.73) - 34.935)
pnorm((19.728*1.75) - 34.935) - pnorm((19.728*1.74) - 34.935)
pnorm((19.728*1.76) - 34.935) - pnorm((19.728*1.75) - 34.935)
pnorm((19.728*1.77) - 34.935) - pnorm((19.728*1.76) - 34.935)
pnorm((19.728*1.78) - 34.935) - pnorm((19.728*1.77) - 34.935)
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pnorm((19.728*1.79) - 34.935) - pnorm((19.728*1.78) - 34.935)
pnorm((19.728*1.8) - 34.935) - pnorm((19.728*1.79) - 34.935)
pnorm((19.728*1.81) - 34.935) - pnorm((19.728*1.8) - 34.935)
pnorm((19.728*1.82) - 34.935) - pnorm((19.728*1.81) - 34.935)
pnorm((19.728*1.83) - 34.935) - pnorm((19.728*1.82) - 34.935)
pnorm((19.728*1.84) - 34.935) - pnorm((19.728*1.83) - 34.935)
pnorm((19.728*1.85) - 34.935) - pnorm((19.728*1.84) - 34.935)
pnorm((19.728*1.86) - 34.935) - pnorm((19.728*1.85) - 34.935)
pnorm((19.728*1.87) - 34.935) - pnorm((19.728*1.86) - 34.935)
pnorm((19.728*1.88) - 34.935) - pnorm((19.728*1.87) - 34.935)
pnorm((19.728*1.89) - 34.935) - pnorm((19.728*1.88) - 34.935)

[ ]: #PROBIT
#(z-scores on the standard normal curve attributed to x dose - how many␣
↪→standard deviations x is from the mean)

((19.728*1.68) - 34.935)
((19.728*1.69) - 34.935)
((19.728*1.7) - 34.935)
((19.728*1.71) - 34.935)
((19.728*1.72) - 34.935)
((19.728*1.73) - 34.935)
((19.728*1.74) - 34.935)
((19.728*1.75) - 34.935)
((19.728*1.76) - 34.935)
((19.728*1.77) - 34.935)
((19.728*1.78) - 34.935)
((19.728*1.79) - 34.935)
((19.728*1.8) - 34.935)
((19.728*1.81) - 34.935)
((19.728*1.82) - 34.935)
((19.728*1.83) - 34.935)
((19.728*1.84) - 34.935)
((19.728*1.85) - 34.935)
((19.728*1.86) - 34.935)
((19.728*1.87) - 34.935)
((19.728*1.88) - 34.935)
((19.728*1.89) - 34.935)

[ ]: #INVERSE C-LOG-LOG
#Gives P(Y=1|X=x)
1-(exp(-exp((22.041*1.69)-39.572)))
1-(exp(-exp((22.041*1.7)-39.572)))
1-(exp(-exp((22.041*1.71)-39.572)))
1-(exp(-exp((22.041*1.72)-39.572)))
1-(exp(-exp((22.041*1.73)-39.572)))
1-(exp(-exp((22.041*1.74)-39.572)))
1-(exp(-exp((22.041*1.75)-39.572)))
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1-(exp(-exp((22.041*1.76)-39.572)))
1-(exp(-exp((22.041*1.77)-39.572)))
1-(exp(-exp((22.041*1.78)-39.572)))
1-(exp(-exp((22.041*1.79)-39.572)))
1-(exp(-exp((22.041*1.8)-39.572)))
1-(exp(-exp((22.041*1.81)-39.572)))
1-(exp(-exp((22.041*1.82)-39.572)))
1-(exp(-exp((22.041*1.83)-39.572)))
1-(exp(-exp((22.041*1.84)-39.572)))
1-(exp(-exp((22.041*1.85)-39.572)))
1-(exp(-exp((22.041*1.86)-39.572)))
1-(exp(-exp((22.041*1.87)-39.572)))
1-(exp(-exp((22.041*1.88)-39.572)))
1-(exp(-exp((22.041*1.89)-39.572)))
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